Probabilistic Circuits for Autonomous Learning: A Simulation Study
Probabilistic Circuits for Autonomous Learning: A Simulation Study
Blog Article
Modern machine learning is based on powerful algorithms running on digital computing platforms and there is great interest in accelerating the learning process and making it more energy efficient.In this paper we present a fully autonomous probabilistic circuit for fast and efficient learning that makes no use of digital computing.Specifically we use SPICE simulations to demonstrate a clockless autonomous citronella horse shampoo circuit where the required synaptic weights are read out in the form of analog voltages.This allows us to demonstrate a circuit that can be built with existing technology to emulate the Boltzmann machine learning algorithm based on gradient optimization of the maximum likelihood function.Such autonomous circuits could be particularly of interest as standalone learning devices chiggate.com in the context of mobile and edge computing.